Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inductive Link Prediction for Nodes Having Only Attribute Information (2007.08053v1)

Published 16 Jul 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Predicting the link between two nodes is a fundamental problem for graph data analytics. In attributed graphs, both the structure and attribute information can be utilized for link prediction. Most existing studies focus on transductive link prediction where both nodes are already in the graph. However, many real-world applications require inductive prediction for new nodes having only attribute information. It is more challenging since the new nodes do not have structure information and cannot be seen during the model training. To solve this problem, we propose a model called DEAL, which consists of three components: two node embedding encoders and one alignment mechanism. The two encoders aim to output the attribute-oriented node embedding and the structure-oriented node embedding, and the alignment mechanism aligns the two types of embeddings to build the connections between the attributes and links. Our model DEAL is versatile in the sense that it works for both inductive and transductive link prediction. Extensive experiments on several benchmark datasets show that our proposed model significantly outperforms existing inductive link prediction methods, and also outperforms the state-of-the-art methods on transductive link prediction.

Citations (72)

Summary

We haven't generated a summary for this paper yet.