Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Failure Modes of Variational Autoencoders and Their Effects on Downstream Tasks (2007.07124v4)

Published 14 Jul 2020 in stat.ML and cs.LG

Abstract: Variational Auto-encoders (VAEs) are deep generative latent variable models that are widely used for a number of downstream tasks. While it has been demonstrated that VAE training can suffer from a number of pathologies, existing literature lacks characterizations of exactly when these pathologies occur and how they impact downstream task performance. In this paper, we concretely characterize conditions under which VAE training exhibits pathologies and connect these failure modes to undesirable effects on specific downstream tasks, such as learning compressed and disentangled representations, adversarial robustness, and semi-supervised learning.

Citations (21)

Summary

We haven't generated a summary for this paper yet.