Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global optimality in model predictive control via hidden invariant convexity (2007.07062v2)

Published 14 Jul 2020 in math.OC, cs.SY, and eess.SY

Abstract: Non-convex optimal control problems occurring in, e.g., water or power systems, typically involve a large number of variables related through nonlinear equality constraints. The ideal goal is to find a globally optimal solution, and numerical experience indicates that algorithms aiming for Karush-Kuhn-Tucker points often find (near-)optimal solutions. In our paper, we provide a theoretical underpinning for this phenomenon, showing that on a broad class of problems the objective can be shown to be an invariantly convex function (invex function) of the control decision variables when state variables are eliminated using implicit function theory. In this way, near-global optimality can be demonstrated, where the exact nature of the global optimality guarantee depends on the position of the solution within the feasible set. In a numerical example, we show how high-quality solutions are obtained with local search for a river control problem where invexity holds.

Summary

We haven't generated a summary for this paper yet.