Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Almost Envy-freeness, Envy-rank, and Nash Social Welfare Matchings (2007.07027v1)

Published 14 Jul 2020 in cs.GT

Abstract: Envy-free up to one good (EF1) and envy-free up to any good (EFX) are two well-known extensions of envy-freeness for the case of indivisible items. It is shown that EF1 can always be guaranteed for agents with subadditive valuations. In sharp contrast, it is unknown whether or not an EFX allocation always exists, even for four agents and additive valuations. In addition, the best approximation guarantee for EFX is $(\phi -1) \simeq 0.61$ by Amanitidis et al.. In order to find a middle ground to bridge this gap, in this paper we suggest another fairness criterion, namely envy-freeness up to a random good or EFR, which is weaker than EFX, yet stronger than EF1. For this notion, we provide a polynomial-time $0.73$-approximation allocation algorithm. For our algorithm, we introduce Nash Social Welfare Matching which makes a connection between Nash Social Welfare and envy freeness. We believe Nash Social Welfare Matching will find its applications in future work.

Citations (18)

Summary

We haven't generated a summary for this paper yet.