Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Attentive Graph Neural Networks for Few-Shot Learning (2007.06878v2)

Published 14 Jul 2020 in cs.LG and stat.ML

Abstract: Graph Neural Networks (GNN) has demonstrated the superior performance in many challenging applications, including the few-shot learning tasks. Despite its powerful capacity to learn and generalize the model from few samples, GNN usually suffers from severe over-fitting and over-smoothing as the model becomes deep, which limit the scalability. In this work, we propose a novel Attentive GNN to tackle these challenges, by incorporating a triple-attention mechanism, i.e. node self-attention, neighborhood attention, and layer memory attention. We explain why the proposed attentive modules can improve GNN for few-shot learning with theoretical analysis and illustrations. Extensive experiments show that the proposed Attentive GNN model achieves the promising results, comparing to the state-of-the-art GNN- and CNN-based methods for few-shot learning tasks, over the mini-ImageNet and tiered-ImageNet benchmarks, under ConvNet-4 and ResNet-based backbone with both inductive and transductive settings. The codes will be made publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hao Cheng (190 papers)
  2. Joey Tianyi Zhou (117 papers)
  3. Wee Peng Tay (101 papers)
  4. Bihan Wen (86 papers)
Citations (11)

Summary

We haven't generated a summary for this paper yet.