Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hermite reduction and a Waring's problem for integral quadratic forms over number fields (2007.06454v2)

Published 13 Jul 2020 in math.NT

Abstract: We generalize the Hermite-Korkin-Zolotarev (HKZ) reduction theory of positive definite quadratic forms over $\mathbb Q$ and its balanced version introduced recently by Beli-Chan-Icaza-Liu to positive definite quadratic forms over a totally real number field $K$. We apply the balanced HKZ-reduction theory to study the growth of the {\em $g$-invariants} of the ring of integers of $K$. More precisely, for each positive integer $n$, let $\mathcal O$ be the ring of integers of $K$ and $g_{\mathcal O}(n)$ be the smallest integer such that every sum of squares of $n$-ary $\mathcal O$-linear forms must be a sum of $g_{\mathcal O}(n)$ squares of $n$-ary $\mathcal O$-linear forms. We show that when $K$ has class number 1, the growth of $g_{\mathcal O}(n)$ is at most an exponential of $\sqrt{n}$. This extends the recent result obtained by Beli-Chan-Icaza-Liu on the growth of $g_{\mathbb Z}(n)$ and gives the first sub-exponential upper bound for $g_{\mathcal O}(n)$ for rings of integers $\mathcal O$ other than $\mathbb Z$.

Summary

We haven't generated a summary for this paper yet.