Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Feasible Inference for Stochastic Volatility in Brownian Semistationary Processes (2007.06357v2)

Published 13 Jul 2020 in math.ST, stat.AP, stat.ME, and stat.TH

Abstract: This article studies the finite sample behaviour of a number of estimators for the integrated power volatility process of a Brownian semistationary process in the non semi-martingale setting. We establish three consistent feasible estimators for the integrated volatility, two derived from parametric methods and one non-parametrically. We then use a simulation study to compare the convergence properties of the estimators to one another, and to a benchmark of an infeasible estimator. We further establish bounds for the asymptotic variance of the infeasible estimator and assess whether a central limit theorem which holds for the infeasible estimator can be translated into a feasible limit theorem for the non-parametric estimator.

Summary

We haven't generated a summary for this paper yet.