Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

LSQT: Low-Stretch Quasi-Trees for Bundling and Layout (2007.06237v1)

Published 13 Jul 2020 in cs.HC and cs.GR

Abstract: We introduce low-stretch trees to the visualization community with LSQT, our novel technique that uses quasi-trees for both layout and edge bundling. Our method offers strong computational speed and complexity guarantees by leveraging the convenient properties of low-stretch trees, which accurately reflect the topological structure of arbitrary graphs with superior fidelity compared to arbitrary spanning trees. Low-stretch quasi-trees also have provable sparseness guarantees, providing algorithmic support for aggressive de-cluttering of hairball graphs. LSQT does not rely on previously computed vertex positions and computes bundles based on topological structure before any geometric layout occurs. Edge bundles are computed efficiently and stored in an explicit data structure that supports sophisticated visual encoding and interaction techniques, including dynamic layout adjustment and interactive bundle querying. Our unoptimized implementation handles graphs of over 100,000 edges in eight seconds, providing substantially higher performance than previous approaches.

Summary

We haven't generated a summary for this paper yet.