Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intelligent Warehouse Allocator for Optimal Regional Utilization (2007.05081v1)

Published 9 Jul 2020 in cs.AI, cs.LG, and math.OC

Abstract: In this paper, we describe a novel solution to compute optimal warehouse allocations for fashion inventory. Procured inventory must be optimally allocated to warehouses in proportion to the regional demand around the warehouse. This will ensure that demand is fulfilled by the nearest warehouse thereby minimizing the delivery logistics cost and delivery times. These are key metrics to drive profitability and customer experience respectively. Warehouses have capacity constraints and allocations must minimize inter warehouse redistribution cost of the inventory. This leads to maximum Regional Utilization (RU). We use machine learning and optimization methods to build an efficient solution to this warehouse allocation problem. We use machine learning models to estimate the geographical split of the demand for every product. We use Integer Programming methods to compute the optimal feasible warehouse allocations considering the capacity constraints. We conduct a back-testing by using this solution and validate the efficiency of this model by demonstrating a significant uptick in two key metrics Regional Utilization (RU) and Percentage Two-day-delivery (2DD). We use this process to intelligently create purchase orders with warehouse assignments for Myntra, a leading online fashion retailer.

Summary

We haven't generated a summary for this paper yet.