Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Treewidth-Aware Complexity in ASP: Not all Positive Cycles are Equally Hard (2007.04620v1)

Published 9 Jul 2020 in cs.LO, cs.AI, and cs.CC

Abstract: It is well-know that deciding consistency for normal answer set programs (ASP) is NP-complete, thus, as hard as the satisfaction problem for classical propositional logic (SAT). The best algorithms to solve these problems take exponential time in the worst case. The exponential time hypothesis (ETH) implies that this result is tight for SAT, that is, SAT cannot be solved in subexponential time. This immediately establishes that the result is also tight for the consistency problem for ASP. However, accounting for the treewidth of the problem, the consistency problem for ASP is slightly harder than SAT: while SAT can be solved by an algorithm that runs in exponential time in the treewidth k, it was recently shown that ASP requires exponential time in k \cdot log(k). This extra cost is due checking that there are no self-supported true atoms due to positive cycles in the program. In this paper, we refine the above result and show that the consistency problem for ASP can be solved in exponential time in k \cdot log({\lambda}) where {\lambda} is the minimum between the treewidth and the size of the largest strongly-connected component in the positive dependency graph of the program. We provide a dynamic programming algorithm that solves the problem and a treewidth-aware reduction from ASP to SAT that adhere to the above limit.

Citations (9)

Summary

We haven't generated a summary for this paper yet.