Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Geodesic Regression (2007.04518v3)

Published 9 Jul 2020 in stat.ML, cs.LG, and stat.ME

Abstract: This paper studies robust regression for data on Riemannian manifolds. Geodesic regression is the generalization of linear regression to a setting with a manifold-valued dependent variable and one or more real-valued independent variables. The existing work on geodesic regression uses the sum-of-squared errors to find the solution, but as in the classical Euclidean case, the least-squares method is highly sensitive to outliers. In this paper, we use M-type estimators, including the $L_1$, Huber and Tukey biweight estimators, to perform robust geodesic regression, and describe how to calculate the tuning parameters for the latter two. We also show that, on compact symmetric spaces, all M-type estimators are maximum likelihood estimators, and argue for the overall superiority of the $L_1$ estimator over the $L_2$ and Huber estimators on high-dimensional manifolds and over the Tukey biweight estimator on compact high-dimensional manifolds. Results from numerical examples, including analysis of real neuroimaging data, demonstrate the promising empirical properties of the proposed approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.