Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near-Optimal Provable Uniform Convergence in Offline Policy Evaluation for Reinforcement Learning (2007.03760v2)

Published 7 Jul 2020 in cs.LG, cs.AI, and stat.ML

Abstract: The problem of Offline Policy Evaluation (OPE) in Reinforcement Learning (RL) is a critical step towards applying RL in real-life applications. Existing work on OPE mostly focus on evaluating a fixed target policy $\pi$, which does not provide useful bounds for offline policy learning as $\pi$ will then be data-dependent. We address this problem by simultaneously evaluating all policies in a policy class $\Pi$ -- uniform convergence in OPE -- and obtain nearly optimal error bounds for a number of global / local policy classes. Our results imply that the model-based planning achieves an optimal episode complexity of $\widetilde{O}(H3/d_m\epsilon2)$ in identifying an $\epsilon$-optimal policy under the time-inhomogeneous episodic MDP model ($H$ is the planning horizon, $d_m$ is a quantity that reflects the exploration of the logging policy $\mu$). To the best of our knowledge, this is the first time the optimal rate is shown to be possible for the offline RL setting and the paper is the first that systematically investigates the uniform convergence in OPE.

Citations (31)

Summary

We haven't generated a summary for this paper yet.