Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Skin effect and winding number in disordered non-Hermitian systems (2007.03738v2)

Published 7 Jul 2020 in cond-mat.dis-nn and quant-ph

Abstract: Unlike their Hermitian counterparts, non-Hermitian (NH) systems may display an exponential sensitivity to boundary conditions and an extensive number of edge-localized states in systems with open boundaries, a phenomena dubbed the "non-Hermitian skin effect." The NH skin effect is one of the primary challenges to defining a topological theory of NH Hamiltonians, as the sensitivity to boundary conditions invalidates the traditional bulk-boundary correspondence. The NH skin effect has recently been connected to the winding number, a topological invariant unique to NH systems. In this paper, we extend the definition of the winding number to disordered NH systems by generalizing established results on disordered Hermitian topological insulators. Our real-space winding number is self-averaging, continuous as a function of the parameters in the problem, and remains quantized even in the presence of strong disorder. We verify that our real-space formula still predicts the NH skin effect, allowing for the possibility of predicting and observing the NH skin effect in strongly disordered NH systems. As an application we apply our results to predict a NH Anderson skin effect where a skin effect is developed as disorder is added to a clean system, and to explain recent results in optical funnels.

Summary

We haven't generated a summary for this paper yet.