Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust Technique for Representative Volume Element Identification in Noisy Microtomography Images of Porous Materials Based on Pores Morphology and Their Spatial Distribution (2007.03035v1)

Published 6 Jul 2020 in physics.comp-ph and cs.CV

Abstract: Microtomography is a powerful method of materials investigation. It enables to obtain physical properties of porous media non-destructively that is useful in studies. One of the application ways is a calculation of porosity, pore sizes, surface area, and other parameters of metal-ceramic (cermet) membranes which are widely spread in the filtration industry. The microtomography approach is efficient because all of those parameters are calculated simultaneously in contrast to the conventional techniques. Nevertheless, the calculations on Micro-CT reconstructed images appear to be time-consuming, consequently representative volume element should be chosen to speed them up. This research sheds light on representative elementary volume identification without consideration of any physical parameters such as porosity, etc. Thus, the volume element could be found even in noised and grayscale images. The proposed method is flexible and does not overestimate the volume size in the case of anisotropic samples. The obtained volume element could be used for computations of the domain's physical characteristics if the image is filtered and binarized, or for selections of optimal filtering parameters for denoising procedure.

Citations (5)

Summary

We haven't generated a summary for this paper yet.