Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Two-Stage Adaptive Pooling with RT-qPCR for COVID-19 Screening (2007.02695v1)

Published 6 Jul 2020 in cs.IT, math.IT, and q-bio.QM

Abstract: We propose two-stage adaptive pooling schemes, 2-STAP and 2-STAMP, for detecting COVID-19 using real-time reverse transcription quantitative polymerase chain reaction (RT-qPCR) test kits. Similar to the Tapestry scheme of Ghosh et al., the proposed schemes leverage soft information from the RT-qPCR process about the total viral load in the pool. This is in contrast to conventional group testing schemes where the measurements are Boolean. The proposed schemes provide higher testing throughput than the popularly used Dorfman's scheme. They also provide higher testing throughput, sensitivity and specificity than the state-of-the-art non-adaptive Tapestry scheme. The number of pipetting operations is lower than state-of-the-art non-adaptive pooling schemes, and is higher than that for the Dorfman's scheme. The proposed schemes can work with substantially smaller group sizes than non-adaptive schemes and are simple to describe. Monte-Carlo simulations using the statistical model in the work of Ghosh et al. (Tapestry) show that 10 infected people in a population of size 961 can be identified with 70.86 tests on the average with a sensitivity of 99.50% and specificity of 99.62. This is 13.5x, 4.24x, and 1.3x the testing throughput of individual testing, Dorfman's testing, and the Tapestry scheme, respectively.

Citations (21)

Summary

We haven't generated a summary for this paper yet.