Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tree-Augmented Cross-Modal Encoding for Complex-Query Video Retrieval (2007.02503v1)

Published 6 Jul 2020 in cs.CV

Abstract: The rapid growth of user-generated videos on the Internet has intensified the need for text-based video retrieval systems. Traditional methods mainly favor the concept-based paradigm on retrieval with simple queries, which are usually ineffective for complex queries that carry far more complex semantics. Recently, embedding-based paradigm has emerged as a popular approach. It aims to map the queries and videos into a shared embedding space where semantically-similar texts and videos are much closer to each other. Despite its simplicity, it forgoes the exploitation of the syntactic structure of text queries, making it suboptimal to model the complex queries. To facilitate video retrieval with complex queries, we propose a Tree-augmented Cross-modal Encoding method by jointly learning the linguistic structure of queries and the temporal representation of videos. Specifically, given a complex user query, we first recursively compose a latent semantic tree to structurally describe the text query. We then design a tree-augmented query encoder to derive structure-aware query representation and a temporal attentive video encoder to model the temporal characteristics of videos. Finally, both the query and videos are mapped into a joint embedding space for matching and ranking. In this approach, we have a better understanding and modeling of the complex queries, thereby achieving a better video retrieval performance. Extensive experiments on large scale video retrieval benchmark datasets demonstrate the effectiveness of our approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Xun Yang (76 papers)
  2. Jianfeng Dong (38 papers)
  3. Yixin Cao (138 papers)
  4. Xun Wang (96 papers)
  5. Meng Wang (1063 papers)
  6. Tat-Seng Chua (359 papers)
Citations (130)