Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Linear Inversion Formula for a class of Hypergeometric polynomials (2007.01865v1)

Published 5 Jul 2020 in math.CA

Abstract: Given complex parameters $x$, $\nu$, $\alpha$, $\beta$ and $\gamma \notin -\mathbb{N}$, consider the infinite lower triangular matrix $\mathbf{A}(x,\nu;\alpha, \beta,\gamma)$ with elements $$ A_{n,k}(x,\nu;\alpha,\beta,\gamma) = \displaystyle (-1)k\binom{n+\alpha}{k+\alpha} \cdot F(k-n,-(\beta+n)\nu;-(\gamma+n);x) $$ for $1 \leqslant k \leqslant n$, depending on the Hypergeometric polynomials $F(-n,\cdot;\cdot;x)$, $n \in \mathbb{N}*$. After stating a general criterion for the inversion of infinite matrices in terms of associated generating functions, we prove that the inverse matrix $\mathbf{B}(x,\nu;\alpha, \beta,\gamma) = \mathbf{A}(x,\nu;\alpha, \beta,\gamma){-1}$ is given by \begin{align} B_{n,k}(x,\nu;\alpha, \beta,\gamma) = & \; \displaystyle (-1)k\binom{n+\alpha}{k+\alpha} \; \cdot \nonumber \ & \; \biggl [ \; \frac{\gamma+k}{\beta+k} \, F(k-n,(\beta+k)\nu;\gamma+k;x) \; + \nonumber \ & \; \; \; \frac{\beta-\gamma}{\beta+k} \, F(k-n,(\beta+k)\nu;1+\gamma+k;x) \; \biggr ] \nonumber \end{align} for $1 \leqslant k \leqslant n$, thus providing a new class of linear inversion formulas. Functional relations for the generating functions of related sequences $S$ and $T$, that is, $T = \mathbf{A}(x,\nu;\alpha, \beta,\gamma) \, S \Longleftrightarrow S = \mathbf{B}(x,\nu;\alpha, \beta,\gamma) \, T$, are also provided.

Summary

We haven't generated a summary for this paper yet.