Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curves of maximal moduli on K3 surfaces (2007.01735v3)

Published 3 Jul 2020 in math.AG

Abstract: We prove that if $X$ is a complex projective K3 surface and $g>0$, then there exist infinitely many families of curves of geometric genus $g$ on $X$ with maximal, i.e., $g$-dimensional, variation in moduli. In particular every K3 surface contains a curve of geometric genus 1 which moves in a non-isotrivial family. This implies a conjecture of Huybrechts on constant cycle curves and gives an algebro-geometric proof of a theorem of Kobayashi that a K3 surface has no global symmetric differential forms.

Summary

We haven't generated a summary for this paper yet.