Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Discrete Probabilistic Approach to Dense Flow Visualization (2007.01629v1)

Published 3 Jul 2020 in cs.GR

Abstract: Dense flow visualization is a popular visualization paradigm. Traditionally, the various models and methods in this area use a continuous formulation, resting upon the solid foundation of functional analysis. In this work, we examine a discrete formulation of dense flow visualization. From probability theory, we derive a similarity matrix that measures the similarity between different points in the flow domain, leading to the discovery of a whole new class of visualization models. Using this matrix, we propose a novel visualization approach consisting of the computation of spectral embeddings, i.e., characteristic domain maps, defined by particle mixture probabilities. These embeddings are scalar fields that give insight into the mixing processes of the flow on different scales. The approach of spectral embeddings is already well studied in image segmentation, and we see that spectral embeddings are connected to Fourier expansions and frequencies. We showcase the utility of our method using different 2D and 3D flows.

Citations (2)

Summary

We haven't generated a summary for this paper yet.