Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep image prior for 3D magnetic particle imaging: A quantitative comparison of regularization techniques on Open MPI dataset (2007.01593v1)

Published 3 Jul 2020 in eess.IV, cs.CV, cs.LG, math.FA, and math.OC

Abstract: Magnetic particle imaging (MPI) is an imaging modality exploiting the nonlinear magnetization behavior of (super-)paramagnetic nanoparticles to obtain a space- and often also time-dependent concentration of a tracer consisting of these nanoparticles. MPI has a continuously increasing number of potential medical applications. One prerequisite for successful performance in these applications is a proper solution to the image reconstruction problem. More classical methods from inverse problems theory, as well as novel approaches from the field of machine learning, have the potential to deliver high-quality reconstructions in MPI. We investigate a novel reconstruction approach based on a deep image prior, which builds on representing the solution by a deep neural network. Novel approaches, as well as variational and iterative regularization techniques, are compared quantitatively in terms of peak signal-to-noise ratios and structural similarity indices on the publicly available Open MPI dataset.

Citations (17)

Summary

We haven't generated a summary for this paper yet.