Optimal control of mean field equations with monotone coefficients and applications in neuroscience (2007.01321v1)
Abstract: We are interested in the optimal control problem associated with certain quadratic cost functionals depending on the solution $X=X\alpha$ of the stochastic mean-field type evolution equation in $\mathbb Rd$ $dX_t=b(t,X_t,\mathcal L(X_t),\alpha_t)dt+\sigma(t,X_t,\mathcal L(X_t),\alpha_t)dW_t,$ $X_0\sim \mu$ given, under assumptions that enclose a sytem of FitzHugh-Nagumo neuron networks, and where for practical purposes the control $\alpha_t$ is deterministic. To do so, we assume that we are given a drift coefficient that satisfies a one-sided Lipshitz condition, and that the dynamics is subject to a (convex) level set constraint of the form $\pi(X_t)\leq0$. The mathematical treatment we propose follows the lines of the recent monograph of Carmona and Delarue for similar control problems with Lipshitz coefficients. After addressing the existence of minimizers via a martingale approach, we show a maximum principle and then numerically investigate a gradient algorithm for the approximation of the optimal control.