Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adapting $k$-means algorithms for outliers (2007.01118v2)

Published 2 Jul 2020 in cs.DS and cs.LG

Abstract: This paper shows how to adapt several simple and classical sampling-based algorithms for the $k$-means problem to the setting with outliers. Recently, Bhaskara et al. (NeurIPS 2019) showed how to adapt the classical $k$-means++ algorithm to the setting with outliers. However, their algorithm needs to output $O(\log (k) \cdot z)$ outliers, where $z$ is the number of true outliers, to match the $O(\log k)$-approximation guarantee of $k$-means++. In this paper, we build on their ideas and show how to adapt several sequential and distributed $k$-means algorithms to the setting with outliers, but with substantially stronger theoretical guarantees: our algorithms output $(1+\varepsilon)z$ outliers while achieving an $O(1 / \varepsilon)$-approximation to the objective function. In the sequential world, we achieve this by adapting a recent algorithm of Lattanzi and Sohler (ICML 2019). In the distributed setting, we adapt a simple algorithm of Guha et al. (IEEE Trans. Know. and Data Engineering 2003) and the popular $k$-means$|$ of Bahmani et al. (PVLDB 2012). A theoretical application of our techniques is an algorithm with running time $\tilde{O}(nk2/z)$ that achieves an $O(1)$-approximation to the objective function while outputting $O(z)$ outliers, assuming $k \ll z \ll n$. This is complemented with a matching lower bound of $\Omega(nk2/z)$ for this problem in the oracle model.

Citations (5)

Summary

We haven't generated a summary for this paper yet.