Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the use of Nonlinear Normal Modes for Nonlinear Reduced Order Modelling (2007.00466v1)

Published 30 Jun 2020 in math.NA and cs.NA

Abstract: In many areas of engineering, nonlinear numerical analysis is playing an increasingly important role in supporting the design and monitoring of structures. Whilst increasing computer resources have made such formerly prohibitive analyses possible, certain use cases such as uncertainty quantification and real time high-precision simulation remain computationally challenging. This motivates the development of reduced order modelling methods, which can reduce the computational toll of simulations relying on mechanistic principles. The majority of existing reduced order modelling techniques involve projection onto linear bases. Such methods are well established for linear systems but when considering nonlinear systems their application becomes more difficult. Targeted schemes for nonlinear systems are available, which involve the use of multiple linear reduction bases or the enrichment of traditional bases. These methods are however generally limited to weakly nonlinear systems. In this work, nonlinear normal modes (NNMs) are demonstrated as a possible invertible reduction basis for nonlinear systems. The extraction of NNMs from output only data using machine learning methods is demonstrated and a novel NNM-based reduced order modelling scheme introduced. The method is demonstrated on a simulated example of a nonlinear 20 degree-of-freedom (DOF) system.

Citations (4)

Summary

We haven't generated a summary for this paper yet.