Papers
Topics
Authors
Recent
2000 character limit reached

Invariant measures on products and on the space of linear orders

Published 1 Jul 2020 in math.DS, math.LO, and math.PR | (2007.00281v3)

Abstract: Let $M$ be an $\aleph_0$-categorical structure and assume that $M$ has no algebraicity and has weak elimination of imaginaries. Generalizing classical theorems of de Finetti and Ryll-Nardzewski, we show that any ergodic, $\operatorname{Aut}(M)$-invariant measure on $[0, 1]M$ is a product measure. We also investigate the action of $\operatorname{Aut}(M)$ on the compact space $\mathrm{LO}(M)$ of linear orders on $M$. If we assume moreover that the action $\operatorname{Aut}(M) \curvearrowright M$ is transitive, we prove that the action $\operatorname{Aut}(M) \curvearrowright \mathrm{LO}(M)$ either has a fixed point or is uniquely ergodic.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.