Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluation of Fairness Trade-offs in Predicting Student Success (2007.00088v1)

Published 30 Jun 2020 in cs.CY and cs.LG

Abstract: Predictive models for identifying at-risk students early can help teaching staff direct resources to better support them, but there is a growing concern about the fairness of algorithmic systems in education. Predictive models may inadvertently introduce bias in who receives support and thereby exacerbate existing inequities. We examine this issue by building a predictive model of student success based on university administrative records. We find that the model exhibits gender and racial bias in two out of three fairness measures considered. We then apply post-hoc adjustments to improve model fairness to highlight trade-offs between the three fairness measures.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hansol Lee (11 papers)
  2. René F. Kizilcec (10 papers)
Citations (28)