Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Momentum Accelerated Multigrid Methods (2006.16986v1)

Published 30 Jun 2020 in math.NA and cs.NA

Abstract: In this paper, we propose two momentum accelerated MG cycles. The main idea is to rewrite the linear systems as optimization problems and apply momentum accelerations, e.g., the heavy ball and Nesterov acceleration methods, to define the coarse-level solvers for multigrid (MG) methods. The resulting MG cycles, which we call them H-cycle (uses heavy ball method) and N-cycle (uses Nesterov acceleration), share the advantages of both algebraic multilevel iteration (AMLI)- and K-cycle (a nonlinear version of the AMLI-cycle). Namely, similar to the K-cycle, our H- and N-cycle do not require the estimation of extreme eigenvalues while the computational cost is the same as AMLI-cycle. Theoretical analysis shows that the momentum accelerated cycles are essentially special AMLI-cycle methods and, thus, they are uniformly convergent under standard assumptions. Finally, we present numerical experiments to verify the theoretical results and demonstrate the efficiency of H- and N-cycle.

Citations (1)

Summary

We haven't generated a summary for this paper yet.