Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting Homomorphisms to $K_4$-minor-free Graphs, modulo 2 (2006.16632v4)

Published 30 Jun 2020 in cs.CC and cs.DM

Abstract: We study the problem of computing the parity of the number of homomorphisms from an input graph $G$ to a fixed graph $H$. Faben and Jerrum [ToC'15] introduced an explicit criterion on the graph $H$ and conjectured that, if satisfied, the problem is solvable in polynomial time and, otherwise, the problem is complete for the complexity class $\oplus\mathrm{P}$ of parity problems. We verify their conjecture for all graphs $H$ that exclude the complete graph on $4$ vertices as a minor. Further, we rule out the existence of a subexponential-time algorithm for the $\oplus\mathrm{P}$-complete cases, assuming the randomised Exponential Time Hypothesis. Our proofs introduce a novel method of deriving hardness from globally defined substructures of the fixed graph $H$. Using this, we subsume all prior progress towards resolving the conjecture (Faben and Jerrum [ToC'15]; G\"obel, Goldberg and Richerby [ToCT'14,'16]). As special cases, our machinery also yields a proof of the conjecture for graphs with maximum degree at most $3$, as well as a full classification for the problem of counting list homomorphisms, modulo $2$.

Citations (5)

Summary

We haven't generated a summary for this paper yet.