Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Stationary Multi-layered Gaussian Priors for Bayesian Inversion (2006.15634v1)

Published 28 Jun 2020 in math.ST and stat.TH

Abstract: In this article, we study Bayesian inverse problems with multi-layered Gaussian priors. We first describe the conditionally Gaussian layers in terms of a system of stochastic partial differential equations. We build the computational inference method using a finite-dimensional Galerkin method. We show that the proposed approximation has a convergence-in-probability property to the solution of the original multi-layered model. We then carry out Bayesian inference using the preconditioned Crank--Nicolson algorithm which is modified to work with multi-layered Gaussian fields. We show via numerical experiments in signal deconvolution and computerized X-ray tomography problems that the proposed method can offer both smoothing and edge preservation at the same time.

Summary

We haven't generated a summary for this paper yet.