Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multiple list colouring of $3$-choice critical graphs (2006.15614v1)

Published 28 Jun 2020 in math.CO

Abstract: A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A characterization of $3$-choice critical graphs was given by Voigt in [On list Colourings and Choosability of Graphs, Habilitationsschrift, Tu Ilmenau(1998)]. Voigt conjectured that if $G$ is a bipartite $3$-choice critical graph, then $G$ is $(4m, 2m)$-choosable for every integer $m$. This conjecture was disproved by Meng, Puleo and Zhu in [On (4, 2)-Choosable Graphs, Journal of Graph Theory 85(2):412-428(2017)]. They showed that if $G=\Theta_{r,s,t}$ where $r,s,t$ have the same parity and $\min{r,s,t} \ge 3$, or $G=\Theta_{2,2,2,2p}$ with $p \ge 2$, then $G$ is bipartite $3$-choice critical, but not $(4,2)$-choosable. On the other hand, all the other bipartite 3-choice critical graphs are $(4,2)$-choosable. This paper strengthens the result of Meng, Puleo and Zhu and shows that all the other bipartite $3$-choice critical graphs are $(4m,2m)$-choosable for every integer $m$.

Summary

We haven't generated a summary for this paper yet.