Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Harmonic measure is absolutely continuous with respect to the Hausdorff measure on all low-dimensional uniformly rectifiable sets (2006.14661v1)

Published 25 Jun 2020 in math.AP

Abstract: It was recently shown that the harmonic measure is absolutely continuous with respect to the Hausdorff measure on a domain with an $n-1$ dimensional uniformly rectifiable boundary, in the presence of now well understood additional topological constraints. The topological restrictions, while mild, are necessary, as the counterexamples of C. Bishop and P. Jones show, and no analogues of these results have been available for higher co-dimensional sets. In the present paper we show that for any $d<n-1$ and for any domain with a $d$-dimensional uniformly rectifiable boundary the elliptic measure of an appropriate degenerate elliptic operator is absolutely continuous with respect to the Hausdorff measure of the boundary. There are no topological or dimensional restrictions contrary to the aforementioned results.

Summary

We haven't generated a summary for this paper yet.