2000 character limit reached
Implicitly Maximizing Margins with the Hinge Loss (2006.14286v1)
Published 25 Jun 2020 in cs.LG and stat.ML
Abstract: A new loss function is proposed for neural networks on classification tasks which extends the hinge loss by assigning gradients to its critical points. We will show that for a linear classifier on linearly separable data with fixed step size, the margin of this modified hinge loss converges to the $\ell_2$ max-margin at the rate of $\mathcal{O}( 1/t )$. This rate is fast when compared with the $\mathcal{O}(1/\log t)$ rate of exponential losses such as the logistic loss. Furthermore, empirical results suggest that this increased convergence speed carries over to ReLU networks.