Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Machine Translation For Paraphrase Generation (2006.14223v1)

Published 25 Jun 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Training a spoken language understanding system, as the one in Alexa, typically requires a large human-annotated corpus of data. Manual annotations are expensive and time consuming. In Alexa Skill Kit (ASK) user experience with the skill greatly depends on the amount of data provided by skill developer. In this work, we present an automatic natural language generation system, capable of generating both human-like interactions and annotations by the means of paraphrasing. Our approach consists of machine translation (MT) inspired encoder-decoder deep recurrent neural network. We evaluate our model on the impact it has on ASK skill, intent, named entity classification accuracy and sentence level coverage, all of which demonstrate significant improvements for unseen skills on natural language understanding (NLU) models, trained on the data augmented with paraphrases.

Citations (19)

Summary

We haven't generated a summary for this paper yet.