Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
98 tokens/sec
DeepSeek R1 via Azure Premium
86 tokens/sec
GPT OSS 120B via Groq Premium
463 tokens/sec
Kimi K2 via Groq Premium
200 tokens/sec
2000 character limit reached

Set Based Stochastic Subsampling (2006.14222v4)

Published 25 Jun 2020 in cs.LG and stat.ML

Abstract: Deep models are designed to operate on huge volumes of high dimensional data such as images. In order to reduce the volume of data these models must process, we propose a set-based two-stage end-to-end neural subsampling model that is jointly optimized with an \textit{arbitrary} downstream task network (e.g. classifier). In the first stage, we efficiently subsample \textit{candidate elements} using conditionally independent Bernoulli random variables by capturing coarse grained global information using set encoding functions, followed by conditionally dependent autoregressive subsampling of the candidate elements using Categorical random variables by modeling pair-wise interactions using set attention networks in the second stage. We apply our method to feature and instance selection and show that it outperforms the relevant baselines under low subsampling rates on a variety of tasks including image classification, image reconstruction, function reconstruction and few-shot classification. Additionally, for nonparametric models such as Neural Processes that require to leverage the whole training data at inference time, we show that our method enhances the scalability of these models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.