Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Identifying group contributions in NBA lineups with spectral analysis (2006.14188v1)

Published 25 Jun 2020 in stat.AP

Abstract: We address the question of how to quantify the contributions of groups of players to team success. Our approach is based on spectral analysis, a technique from algebraic signal processing, which has several appealing features. First, our analysis decomposes the team success signal into components that are naturally understood as the contributions of player groups of a given size: individuals, pairs, triples, fours, and full five-player lineups. Secondly, the decomposition is orthogonal so that contributions of a player group can be thought of as pure: Contributions attributed to a group of three, for example, have been separated from the lower-order contributions of constituent pairs and individuals. We present detailed a spectral analysis using NBA play-by-play data and show how this can be a practical tool in understanding lineup composition and utilization.

Summary

We haven't generated a summary for this paper yet.