Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Freely scalable and reconfigurable optical hardware for deep learning (2006.13926v1)

Published 24 Jun 2020 in cs.ET

Abstract: As deep neural network (DNN) models grow ever-larger, they can achieve higher accuracy and solve more complex problems. This trend has been enabled by an increase in available compute power; however, efforts to continue to scale electronic processors are impeded by the costs of communication, thermal management, power delivery and clocking. To improve scalability, we propose a digital optical neural network (DONN) with intralayer optical interconnects and reconfigurable input values. The near path-length-independence of optical energy consumption enables information locality between a transmitter and arbitrarily arranged receivers, which allows greater flexibility in architecture design to circumvent scaling limitations. In a proof-of-concept experiment, we demonstrate optical multicast in the classification of 500 MNIST images with a 3-layer, fully-connected network. We also analyze the energy consumption of the DONN and find that optical data transfer is beneficial over electronics when the spacing of computational units is on the order of >10 micrometers.

Citations (60)

Summary

We haven't generated a summary for this paper yet.