Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete correlations of order 2 of generalised Rudin-Shapiro sequences: a combinatorial approach (2006.13162v1)

Published 23 Jun 2020 in math.CO, cs.DM, math.DS, math.NT, and math.PR

Abstract: We introduce a family of block-additive automatic sequences, that are obtained by allocating a weight to each couple of digits, and defining the $n$th term of the sequence as being the total weight of the integer $n$ written in base $k$. Under an additional difference condition on the weight function, these sequences can be interpreted as generalised Rudin-Shapiro sequences, and we prove that they have the same correlations of order 2 as sequences of symbols chosen uniformly and independently at random. The speed of convergence is very fast and is independent of the prime factor decomposition of $k$. This extends recent work of Tahay. The proof relies on direct observations about base-$k$ representations of integers and combinatorial considerations. We also provide extensions of our results to higher-dimensional block-additive sequences.

Citations (2)

Summary

We haven't generated a summary for this paper yet.