Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Fitting inhomogeneous phase-type distributions to data: the univariate and the multivariate case (2006.13003v2)

Published 23 Jun 2020 in math.ST and stat.TH

Abstract: The class of inhomogeneous phase-type distributions (IPH) was recently introduced in Albrecher and Bladt (2019) as an extension of the classical phase-type (PH) distributions. Like PH distributions, the class of IPH is dense in the class of distributions on the positive halfline, but leads to more parsimonious models in the presence of heavy tails. In this paper we propose a fitting procedure for this class to given data. We furthermore consider an analogous extension of Kulkarni's multivariate phase-type class (Kulkarni, 1989) to the inhomogeneous framework and study parameter estimation for the resulting new and flexible class of multivariate distributions. As a by-product, we amend a previously suggested fitting procedure for the homogeneous multivariate phase-type case and provide appropriate adaptations for censored data. The performance of the algorithms is illustrated in several numerical examples, both for simulated and real-life insurance data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.