Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global existence and blow-up of solutions for a parabolic equation involving the fractional $p(x)$-Laplacian (2006.11859v1)

Published 21 Jun 2020 in math.AP

Abstract: In this paper, we consider a non-local diffusion equation involving the fractional $p(x)$-Laplacian with nonlinearities of variable exponent type. Employing the sub-differential approach we establish the existence of local solutions. By combining the potential well theory with the Nehari manifold, we obtain the existence of global solutions and finite time blow-up of solutions. Moreover, we study the asymptotic stability of global solutions as time goes to infinity in some variable exponent Lebesgue spaces.

Summary

We haven't generated a summary for this paper yet.