Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Additive Tree-Structured Covariance Function for Conditional Parameter Spaces in Bayesian Optimization (2006.11771v1)

Published 21 Jun 2020 in stat.ML and cs.LG

Abstract: Bayesian optimization (BO) is a sample-efficient global optimization algorithm for black-box functions which are expensive to evaluate. Existing literature on model based optimization in conditional parameter spaces are usually built on trees. In this work, we generalize the additive assumption to tree-structured functions and propose an additive tree-structured covariance function, showing improved sample-efficiency, wider applicability and greater flexibility. Furthermore, by incorporating the structure information of parameter spaces and the additive assumption in the BO loop, we develop a parallel algorithm to optimize the acquisition function and this optimization can be performed in a low dimensional space. We demonstrate our method on an optimization benchmark function, as well as on a neural network model compression problem, and experimental results show our approach significantly outperforms the current state of the art for conditional parameter optimization including SMAC, TPE and Jenatton et al. (2017).

Citations (5)

Summary

We haven't generated a summary for this paper yet.