Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
112 tokens/sec
GPT-4o
13 tokens/sec
Gemini 2.5 Pro Pro
39 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Hierarchical Reinforcement Learning for Deep Goal Reasoning: An Expressiveness Analysis (2006.11704v1)

Published 21 Jun 2020 in cs.AI

Abstract: Hierarchical DQN (h-DQN) is a two-level architecture of feedforward neural networks where the meta level selects goals and the lower level takes actions to achieve the goals. We show tasks that cannot be solved by h-DQN, exemplifying the limitation of this type of hierarchical framework (HF). We describe the recurrent hierarchical framework (RHF), generalizing architectures that use a recurrent neural network at the meta level. We analyze the expressiveness of HF and RHF using context-sensitive grammars. We show that RHF is more expressive than HF. We perform experiments comparing an implementation of RHF with two HF baselines; the results corroborate our theoretical findings.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.