Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Generation of Large-scale Structure Density Maps via Generative Adversarial Networks (2006.11359v1)

Published 19 Jun 2020 in astro-ph.CO

Abstract: Generative Adversarial Networks (GANs) are a recent advancement in unsupervised machine learning. They are a cat-and-mouse game between two neural networks: [1] a discriminator network which learns to validate whether a sample is real or fake compared to a training set and [2] a generator network which learns to generate data that appear to belong to the training set. Both networks learn from each other until training is complete and the generator network is able to produce samples that are indistinguishable from the training set. We find that GANs are well-suited for fast generation of novel 3D density maps that are indistinguishable from those obtained from N-body simulations. In a matter of seconds, a fully trained GAN can generate thousands of density maps at different epochs in the history of the universe. These GAN-generated maps can then be used to study the evolution of large-scale structure over time.

Summary

We haven't generated a summary for this paper yet.