Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Minimax rates without the fixed sample size assumption (2006.11170v2)

Published 19 Jun 2020 in math.ST and stat.TH

Abstract: We generalize the notion of minimax convergence rate. In contrast to the standard definition, we do not assume that the sample size is fixed in advance. Allowing for varying sample size results in time-robust minimax rates and estimators. These can be either strongly adversarial, based on the worst-case over all sample sizes, or weakly adversarial, based on the worst-case over all stopping times. We show that standard and time-robust rates usually differ by at most a logarithmic factor, and that for some (and we conjecture for all) exponential families, they differ by exactly an iterated logarithmic factor. In many situations, time-robust rates are arguably more natural to consider. For example, they allow us to simultaneously obtain strong model selection consistency and optimal estimation rates, thus avoiding the "AIC-BIC dilemma".

Summary

We haven't generated a summary for this paper yet.