2000 character limit reached
Karp's patching algorithm on dense digraphs (2006.10804v3)
Published 18 Jun 2020 in cs.DS and math.CO
Abstract: We consider the following question. We are given a dense digraph $D$ with minimum in- and out-degree at least $\alpha n$, where $\alpha>1/2$ is a constant. The edges of $D$ are given edge costs $C(e),e\in E(D)$, where $C(e)$ is an independent copy of the uniform $[0,1]$ random variable $U$. Let $C(i,j),i,j\in[n]$ be the associated $n\times n$ cost matrix where $C(i,j)=\infty$ if $(i,j)\notin E(D)$. We show that w.h.p. the patching algorithm of Karp finds a tour for the asymmetric traveling salesperson problem that is asymptotically equal to that of the associated assignment problem. Karp's algorithm runs in polynomial time.