Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Language Guided Networks for Cross-modal Moment Retrieval (2006.10457v2)

Published 18 Jun 2020 in cs.CV and cs.AI

Abstract: We address the challenging task of cross-modal moment retrieval, which aims to localize a temporal segment from an untrimmed video described by a natural language query. It poses great challenges over the proper semantic alignment between vision and linguistic domains. Existing methods independently extract the features of videos and sentences and purely utilize the sentence embedding in the multi-modal fusion stage, which do not make full use of the potential of language. In this paper, we present Language Guided Networks (LGN), a new framework that leverages the sentence embedding to guide the whole process of moment retrieval. In the first feature extraction stage, we propose to jointly learn visual and language features to capture the powerful visual information which can cover the complex semantics in the sentence query. Specifically, the early modulation unit is designed to modulate the visual feature extractor's feature maps by a linguistic embedding. Then we adopt a multi-modal fusion module in the second fusion stage. Finally, to get a precise localizer, the sentence information is utilized to guide the process of predicting temporal positions. Specifically, the late guidance module is developed to linearly transform the output of localization networks via the channel attention mechanism. The experimental results on two popular datasets demonstrate the superior performance of our proposed method on moment retrieval (improving by 5.8\% in terms of [email protected] on Charades-STA and 5.2\% on TACoS). The source code for the complete system will be publicly available.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Kun Liu (86 papers)
  2. Huadong Ma (52 papers)
  3. Chuang Gan (195 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.