Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
101 tokens/sec
Gemini 2.5 Pro Premium
50 tokens/sec
GPT-5 Medium
28 tokens/sec
GPT-5 High Premium
27 tokens/sec
GPT-4o
101 tokens/sec
DeepSeek R1 via Azure Premium
90 tokens/sec
GPT OSS 120B via Groq Premium
515 tokens/sec
Kimi K2 via Groq Premium
220 tokens/sec
2000 character limit reached

Cross-Correlated Attention Networks for Person Re-Identification (2006.09597v1)

Published 17 Jun 2020 in cs.CV

Abstract: Deep neural networks need to make robust inference in the presence of occlusion, background clutter, pose and viewpoint variations -- to name a few -- when the task of person re-identification is considered. Attention mechanisms have recently proven to be successful in handling the aforementioned challenges to some degree. However previous designs fail to capture inherent inter-dependencies between the attended features; leading to restricted interactions between the attention blocks. In this paper, we propose a new attention module called Cross-Correlated Attention (CCA); which aims to overcome such limitations by maximizing the information gain between different attended regions. Moreover, we also propose a novel deep network that makes use of different attention mechanisms to learn robust and discriminative representations of person images. The resulting model is called the Cross-Correlated Attention Network (CCAN). Extensive experiments demonstrate that the CCAN comfortably outperforms current state-of-the-art algorithms by a tangible margin.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.