Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

BoMaNet: Boolean Masking of an Entire Neural Network (2006.09532v2)

Published 16 Jun 2020 in cs.CR

Abstract: Recent work on stealing ML models from inference engines with physical side-channel attacks warrant an urgent need for effective side-channel defenses. This work proposes the first $\textit{fully-masked}$ neural network inference engine design. Masking uses secure multi-party computation to split the secrets into random shares and to decorrelate the statistical relation of secret-dependent computations to side-channels (e.g., the power draw). In this work, we construct secure hardware primitives to mask $\textit{all}$ the linear and non-linear operations in a neural network. We address the challenge of masking integer addition by converting each addition into a sequence of XOR and AND gates and by augmenting Trichina's secure Boolean masking style. We improve the traditional Trichina's AND gates by adding pipelining elements for better glitch-resistance and we architect the whole design to sustain a throughput of 1 masked addition per cycle. We implement the proposed secure inference engine on a Xilinx Spartan-6 (XC6SLX75) FPGA. The results show that masking incurs an overhead of 3.5\% in latency and 5.9$\times$ in area. Finally, we demonstrate the security of the masked design with 2M traces.

Citations (42)

Summary

We haven't generated a summary for this paper yet.