Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
94 tokens/sec
Gemini 2.5 Pro Premium
55 tokens/sec
GPT-5 Medium
38 tokens/sec
GPT-5 High Premium
24 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
518 tokens/sec
Kimi K2 via Groq Premium
188 tokens/sec
2000 character limit reached

Trends, Reversion, and Critical Phenomena in Financial Markets (2006.07847v4)

Published 14 Jun 2020 in q-fin.ST, cond-mat.stat-mech, hep-th, q-fin.PM, and q-fin.TR

Abstract: Financial markets across all asset classes are known to exhibit trends. These trends have been exploited by traders for decades. Here, we empirically measure when trends revert, based on 30 years of daily futures prices for equity indices, interest rates, currencies and commodities. We find that trends tend to revert once they reach a critical level of statistical significance. Based on polynomial regression, we carefully measure this critical level. We find that it is universal across asset classes and has a universal scaling behavior, as the trend's time horizon runs from a few days to several years. The corresponding regression coefficients are small, but statistically highly significant, as confirmed by bootstrapping and out-of-sample testing. Our results signal to investors when to exit a trend. They also reveal how markets have become more efficient over the decades. Moreover, they point towards a potential deep analogy between financial markets and critical phenomena: our analysis supports the conjecture that financial markets can be modeled as statistical mechanical ensembles of Buy/Sell orders near critical points. In this analogy, the trend strength plays the role of an order parameter, whose dynamcis is described by a Langevin equation with a quartic potential.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube