Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

v2e: From Video Frames to Realistic DVS Events (2006.07722v2)

Published 13 Jun 2020 in cs.CV

Abstract: To help meet the increasing need for dynamic vision sensor (DVS) event camera data, this paper proposes the v2e toolbox that generates realistic synthetic DVS events from intensity frames. It also clarifies incorrect claims about DVS motion blur and latency characteristics in recent literature. Unlike other toolboxes, v2e includes pixel-level Gaussian event threshold mismatch, finite intensity-dependent bandwidth, and intensity-dependent noise. Realistic DVS events are useful in training networks for uncontrolled lighting conditions. The use of v2e synthetic events is demonstrated in two experiments. The first experiment is object recognition with N-Caltech 101 dataset. Results show that pretraining on various v2e lighting conditions improves generalization when transferred on real DVS data for a ResNet model. The second experiment shows that for night driving, a car detector trained with v2e events shows an average accuracy improvement of 40% compared to the YOLOv3 trained on intensity frames.

Citations (56)

Summary

We haven't generated a summary for this paper yet.