Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stability Analysis using Quadratic Constraints for Systems with Neural Network Controllers (2006.07579v2)

Published 13 Jun 2020 in eess.SY and cs.SY

Abstract: A method is presented to analyze the stability of feedback systems with neural network controllers. Two stability theorems are given to prove asymptotic stability and to compute an ellipsoidal inner-approximation to the region of attraction (ROA). The first theorem addresses linear time-invariant systems, and merges Lyapunov theory with local (sector) quadratic constraints to bound the nonlinear activation functions in the neural network. The second theorem allows the system to include perturbations such as unmodeled dynamics, slope-restricted nonlinearities, and time delay, using integral quadratic constraint (IQCs) to capture their input/output behavior. This in turn allows for off-by-one IQCs to refine the description of activation functions by capturing their slope restrictions. Both results rely on semidefinite programming to approximate the ROA. The method is illustrated on systems with neural networks trained to stabilize a nonlinear inverted pendulum as well as vehicle lateral dynamics with actuator uncertainty.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. He Yin (18 papers)
  2. Peter Seiler (60 papers)
  3. Murat Arcak (84 papers)
Citations (104)

Summary

We haven't generated a summary for this paper yet.