Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The A Priori Estimate and Existence of the Positive Solution for A Nonlinear System Involving the Fractional Laplacian (2006.07355v1)

Published 12 Jun 2020 in math.AP

Abstract: In the paper, we consider the fractional elliptic system \begin{equation*}\left{\begin{array}{ll} (- \Delta){\frac{\alpha_1}{2}}u(x)+\sum\limitsn_{i=1}b_i(x)\frac{\partial u}{\partial x_i}+B(x)u(x)=f(x,u,v),& \mbox { in } \Omega,\ (- \Delta){\frac{\alpha_2}{2}}v(x)+\sum\limitsn_{i=1}c_i(x)\frac{\partial v}{\partial x_i}+C(x)v(x)=g(x,u,v),& \mbox { in } \Omega,\ u=v=0, & \mbox { in } \mathbb{R}n\setminus\Omega, \end{array} \right.\label{a-1.2} \end{equation*} where $\Omega$ is a bounded domain with $C2$ boundary in $\mathbb{R}n$ and $n>\max{\alpha_1,\alpha_2}$. We first utilize the blowing-up and re-scaling method to derive the a priori estimate for positive solutions when $1<\alpha_1,\alpha_2 <2$. Then for $0<\alpha_1,\alpha_2 <1$, we obtain the regularity estimate of positive solutions. On top of this, using the topological degree theory we prove the existence of positive solutions.

Summary

We haven't generated a summary for this paper yet.